Node properties

One of the nice things about silkopter is that is very easy to add new types of nodes to the system.

A node can be anything from a sensor to a low pass filter to a PWM generator like PIGPIO. All nodes have the following properties:

  • Zero or more input streams. Each stream has a type and a rate
  • Zero or more output streams. Same as the inputs, they have a type and rate
  • An Init_Params struct that decides the initialization params of the node. Once the node is created this cannot be changed. The usual params that go in this struct is the rate (process frequency), number of channels for a PWM sink etc.
  • A Config struct that holds changable configuration. This can be changed at any time and contains PID settings for example

The Init_Params and the Config structs are custom, per node. They have to be serializable to json for loading/saving, serializable to binary for comms (the json serialization can be used here) and they need to be editable in an UI for the Ground Station

Silkopter defines the Init_Params and Comms in a json file – one per node – and then generates the actual C++ structs and serialization code from this json description. The UI for editing is dynamic, based on the serialized json of the structs.

So for example the load flow is this:

  • the settings.json file is loaded and converted to a json structure using the rapidjson library
  • the list of nodes is iterated and nodes are created from it
  • each node has its init method called with the init_params json passed to it
  • the init method deserializes the init_params json using generated code into a Init_Params C++ struct

The save flow is the inverse of the one above.

Sending the node Init_Params and the Config to the GS and editing it:

  • The get_init_params (or get_config) is called for a node. This serializes the internal Init_Params or Config to json using the generated code
  • The json stringified using rapidjson and sent to the GS
  • The GS parses the string using rapidjson back into a json data structure
  • A QT item model is used over this json to populate a tree view with the data
  • When data is changed by QT as a response to user interaction (typing a new value for example) the json changes. As a result of this its serialized back to string, sent to the Brain which then calls set_config with the json.

So in order to add a new node, 3 steps have to be done – all of them in the brain. The GS is unchanged:

  1. Create the node C++ class with all the processing needed
  2. Create a json description of the Init_Params and Config and generate the code for them using autojsoncxx library
[
    {
        "definition" : true,
        "namespace" : "sz::ADC_Ammeter",
        "name": "Init_Params",
        "members":
        [
            ["uint32_t", "rate", {"required": true, "json_key" : "Rate (Hz)", "default" : 0}]
        ]
    },
    {
        "definition" : true,
        "namespace" : "sz::ADC_Ammeter",
        "name": "Config",
        "members":
        [
            ["float", "scale", {"required": false, "json_key" : "Scale", "default" : 1}],
            ["float", "bias", {"required": false, "json_key" : "Bias", "default" : 0}]
        ]
    }
]

3. Register the new node in the UAV node factory:

m_node_factory.add<ADC_Ammeter>("ADC Ammeter", *this);

 

The big advantage of having the serialization code generated is that it’s impossible to make mistakes.

The nice thing about having the UI generated is that the GS doesn’t have to change every time a new node is added or a new property is added/removed from an existing node config or init params.

 

So in the new GS I intend to keep this but I really want to get rid of the json definition file and replace it with a domain specific language. Main reason is that the json is not as expressive as I want and doesn’t support all the attributes I need – like ranges for the values.

I already started working on a flex/bison grammar for this and a library that will handle the reflection.

More details and a working example soon.

Advertisements

One thought on “Node properties

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s